Finally, Flying Car Mode

Ronnie Schreiber
by Ronnie Schreiber

A flying car is one of the evergreen fantasies of car guys, and finally Chevrolet has fulfilled that fantasy, sort of. GM engineers have developed what they call “Flying Car Mode” for the Camaro Z/28, the most track-capable version of Chevy’s muscle car. While it doesn’t make the Camaro fly, it is a rather clever use of technology that’s already on board when the Z/28 does get off the ground that allows the car to do faster laps.

Though getting air is not typically an issue on the road, on a race track with elevation changes you can get all four wheels to leave terra firma at the same time. While developing the new Z/28, the car was taken to the Nurburgring and they discovered that because of the way the vehicle’s traction control system worked, whenever the car got air the system sensed wheel spin and cut power to the driving wheels, which meant that it slowed down when it hit the ground, producing slower lap times. Since bragging rights from the ‘Ring have become a part of performance car marketing and since you can get air several times a lap there, a solution had to be found. The proposed solution GM engineers came up with was to deactivate traction control when the car is in the air. That will keep the wheels spinning under power, allowing the car to accelerate as soon as the wheels are back on the pavement. The question then becomes, how do the computers running things know that the car is off of the ground?

While the Z/28’s Flying Car Mode was developed to go around the ‘Ring faster, this is the road course at the GM Proving Grounds near Milford, Michigan, not the Flugplatz near Nürburg, Rhineland-Palatinate.

GM’s highest performance cars like the ZR1 Corvette, and the ZL-1 and Z/28 versions of the Camaro feature what the automaker calls the Performance Traction Management system, or PTM, which integrates traction control, Active Handling, and chassis mode selection to work together. Cars with PTM are equipped with ride height sensors. On the Z/28, when the PTM system senses full chassis drop from the ride height sensors, it goes into Flying Car Mode, deactivating traction control. GM says that keeping the wheels spinning when getting air saved them 5 seconds a lap at the ‘Ring’s Nordschleife circuit.

Bill Wise, Camaro Z/28 vehicle performance engineer, explained the details. “PTM uses torque, lateral acceleration and rear-axle wheel slip to define the amount of traction control required, but when the car clears a rise on the track, it normally wants to decrease torque to increase traction. The unique logic in the system uses the ride-height sensors to determine the reduction in force on the tires that’s unique to track driving and allows the car to continue with uninterrupted momentum and, ultimately, a better lap time.”

Once the ride height sensors detect that the wheels have touched down, the PTM system reactivates traction control.

PTM has five performance levels and the flying car logic is active, to varying degrees, in all five modes, so if you manage to catch some air while tooling around on public roads, you’ll still hit the ground running, so to speak, but flying car mode is most effective in Mode 5, the setting Z/28 drivers would likely use on the track.

Source: General Motors.

Ronnie Schreiber edits Cars In Depth, a realistic perspective on cars & car culture and the original 3D car site. If you found this post worthwhile, you can get a parallax view at Cars In Depth. If the 3D thing freaks you out, don’t worry, all the photo and video players in use at the site have mono options. Thanks for reading – RJS

Ronnie Schreiber
Ronnie Schreiber

Ronnie Schreiber edits Cars In Depth, the original 3D car site.

More by Ronnie Schreiber

Comments
Join the conversation
2 of 6 comments
  • Tayloo Tayloo on Mar 24, 2014

    Flying cars are like dream to us. We were waiting for this invention since long time, but we did not get the exact flying car but we got a part of it. It will be very comfortable for us to take a drive on this technology and will be very free to drive this car. There are several sensors attached to the tires which make the car jump and then the speed slows down when the car touches the road. This technology will give us a exciting and happy journey.

  • Steve7876 Steve7876 on Aug 11, 2016

    Now having a car is a status for everyone. People totally depend on car to perform their day to day work. Every Americans spend an average of 75 minutes a day in their car, but using cell phones while riding or taking a drink before driving is a bad habit of people. innovatecar

  • CanadaCraig You can just imagine how quickly the tires are going to wear out on a 5,800 lbs AWD 2024 Dodge Charger.
  • Luke42 I tried FSD for a month in December 2022 on my Model Y and wasn’t impressed.The building-blocks were amazing but sum of the all of those amazing parts was about as useful as Honda Sensing in terms of reducing the driver’s workload.I have a list of fixes I need to see in Autopilot before I blow another $200 renting FSD. But I will try it for free for a month.I would love it if FSD v12 lived up to the hype and my mind were changed. But I have no reason to believe I might be wrong at this point, based on the reviews I’ve read so far. [shrug]. I’m sure I’ll have more to say about it once I get to test it.
  • FormerFF We bought three new and one used car last year, so we won't be visiting any showrooms this year unless a meteor hits one of them. Sorry to hear that Mini has terminated the manual transmission, a Mini could be a fun car to drive with a stick.It appears that 2025 is going to see a significant decrease in the number of models that can be had with a stick. The used car we bought is a Mk 7 GTI with a six speed manual, and my younger daughter and I are enjoying it quite a lot. We'll be hanging on to it for many years.
  • Oberkanone Where is the value here? Magna is assembling the vehicles. The IP is not novel. Just buy the IP at bankruptcy stage for next to nothing.
  • Jalop1991 what, no Turbo trim?
Next